MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A # Vibrational Energy Transfer at a Gold Surface in Reacting Systems. Cyclobutene and Nitromethane Wei Yuan and B. S. Rabinovitch Department of Chemistry BG-10, University of Washington Seattle, Washington 98195 Technical Report No. NR092-549-TR26 Contract N00014-75-C-0690, NR-092-549 December 1, 1982 Prepared for Publication in Journal of Physical Chemistry (Flygare Memorial Issue) OFFICE OF NAVAL RESEARCH Department of the Navy Code 473, 800 N. Quincy Arlington, VA 22217 Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release; its distribution is unlimited. DIE SILE COP 83 01 10 008 SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) | REPORT DOCUMENTATION PAGE | READ INSTRUCTIONS | | |--|--|--| | | BEFORE COMPLETING FORM | | | NR092-549-TR2 AD-AI2 | | | | Vibrational Energy Transfer at a Gold Surface in Reacting Systems. Cyclobutene and Nitrome- | | | | thane. | 6. PERFORMING ORG. REPORT NUMBER | | | W. Yuan and B. S. Rabinovitch | NO0014-75-C-0690
NR092-549 | | | Professor B. S. Rabinovitch Department of Chemistry BG-10 University of Washington, Seattle, WA 98195 | 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT MUMBERS | | | Office of Naval Research, Code 743 | Dec. 1, 1982 | | | Department of the Navy
800 N. Quincy, Arlington, VA 22217 | 13. NUMBER OF PAGES | | | 14 MONITORING AGENCY NAME & ADDRESS(II dillorent from Controlling Offi | Unclassified | | | | 186. OECLASSIFICATION/DOWNGRADING | | | 16. DISTRIBUTION STATEMENT (of this Report) | Jenesocc | | | This document has been approved for public release; its distribution is unlimited. 17. DISTRIBUTION STATEMENT (of the abotract entered in Black 20, if different from Report) | | | | Prepared for publication in J. Phys. Chem. | | | | 18. SUPPLEMENTARY NOTES | | | | Accomodation coefficient Nitromethane Cyclobutene Surfaces Energy Transfer Unimolecular Reaction Gold Vibrational Relaxation | | | | High Temperature 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Single collision vibrational excitation probabilities were measured on | | | | treated polycrystalline gold plane and wire surfaces. For cyclobutene, strong collider behavior obtains below 600 K. The energy transfer efficiency is greater than that on a seasoned silica surface. The energy transfer efficiency declined above 600 K to a quasi-constant value in the range 900 K - 1150 K. This may be evidence for surface mobility. Unlike cyclobutene, and earlier | | | | studies of nitromethane on silica Surfaces wher havior could be attained, nitromethane on gold it which the various conditioning treatments for | e reproducible non-catalytic be- | | | DD 1 JAN 73 18/3 EDITION OF I NOV 45 IS OBSOLETE | Inclassified | | | 8/N 0102 LF 014 6601 | CLASSICATION OF THIS BACK (Bon Date Batered | | Vibrational Energy Transfer at a Gold Surface in Reacting Systems. Cyclobutene and Nitromethane[†] Wei Yuan and B. S. Rabinovitch Department of Chemistry BG-10, University of Washington Seattle, Washington 98195 #### Abstract Single collision excitation probabilities were measured for cyclobutene and nitromethane on polycrystalline gold plane and wire surfaces. Transport above the reaction thresholds for isomerization and decomposition, respectively, for the two substrates was used as the criterion of vibrational energy transfer. Several different seasoning and processing procedures of the surfaces were tested. For cyclobutene, a defect from strong collider transition probabilities appeared only above 550 K - 600 K, which signifies that the energy transfer efficiency at a treated gold surface is greater than that at a seasoned silica surface. The vibrational energy transfer efficiency declined above 600 K and fell abruptly to a quasi-constant value in the range 900 K - 1100 K. Above 1100 K the differences between various conditioned surfaces diminished progressively. Unlike cyclobutene, and earlier studies of nitromethane on silica surfaces where reproducible non-catalytic behavior could be attained, nitromethane on gold showed apparent catalytic phenomena which the various conditioning treatments failed to repress. #### Introduction The study of vibrational energy transfer between molecules and metal surfaces is of continuing interest both for theoreticians and experimentalists. $^{1-3}$ Rosenblatt has studied energy transfer efficiencies at room temperature on different "dirty" metal surfaces, particularly iron, by an ingenious vibrating surface method and obtained relative values for energy transfer involving internal and translational degrees of freedom. He and his co-workers found that hydrocarbons exhibited larger energy transfer facility than did diatomic molecules; for heavier paraffin hydrocarbons (c_4-c_8) the vibrational energy accommodation coefficients approached 0.9, presumably due to longer residence times. Related results at higher temperature have also been reported by Foner and Hudson. They measured the vibrational accommodation coefficient of n-butane on a "dirty" polycrystalline platinum ribbon at 1000^{0} C and reported a value of 0.05. Our recent series of studies by the Variable Encounter Method has been devoted to the phenomenon of gas-surface vibrational energy transfer on seasoned silica surfaces at a level of vibrational excitation above reaction threshold. Single collision systems have been examined as a special case of the VEM method. The energy transport of reactant molecules to levels above the reaction threshold can be observed most simply under single collision conditions. For multi-collision conditions, the energetic distribution of excited molecules is an average effect of a sequence of collisions. Both conditions have their own uses. 8 Several of our studies dealt with energy relaxation by cyclobutene⁷⁻¹⁰ and nitromethane. ¹¹ Energy transfer efficiencies at seasoned pyrex and fused silica surfaces were examined. Because of its polarity, a larger energy transfer efficiency for nitromethane was expected and found. Amorebleta and Colussi¹² have recently reported a study of vibrational energy transfer in an nostic energy technique similar to that of ref. 5. Their evaluated accommodation coefficient had a value of 0.66 at 350 K and decreased approximately linearly with temperature. Their result is quite different from the approximate strong collider character obtained for cyclobutene below 450 K⁷ by Arakawa et al. 8,10 It is of interest to note that if one plots the accommodation coefficients against temperature for cyclobutene on a seasoned silica surface, calculated on the basis of the Boltzmann-Exponential energy transfer model, 8,9 then the result of Foner and Hudson fits on the same curve. The comparison is shown in Fig. 1. One might expect that a metal surface would be a stronger collider because of the variety of possible energy relaxation mechanisms, including phonon, hole pair and plasmon excitation, that are postulated to function for molecules on metals. 13-15 However, it is possible that the relaxation process on a seasoned or "dirty" metal surface might simply resemble the better known 16 gas phase, molecule-molecule energy exchange behavior. One molecule of the pair would be represented by the graphitic/polymeric covering on the seasoned surface. Of course, gas/solid interaction is presumably not subject to the angular momentum conservation restrictions found for two-body gas phase transfers. In the present paper we have extended the study of surface variation to a single collision study of cyclobutene isomerization to 1,3-butadiene on a polycrystalline gold surface. We have chosen to use gold because it is one of the most amenable of the metallic elements. In the form of finely divided particles supported on oxide substrate, gold can catalyze some hydrogenation, isotope exchange and isomerization reactions of hydrocarbons; however, the massive form of the element is usually catalytically inert. The behavior of nitromethane, which in the earlier work was found to exhibit greater sensitivity to surface conditions, has been studied as well. We find that the gold surface is relatively inert in the isomerization of cyclobutene to 1,3-butadiene but not in nitromethane decomposition. #### **Experimental** C U Cyclobutene was obtained from Columbia Chemicals (99.9% pure) and was used without further purification. Nitromethane (Aldrich Chemical Co. 99%, spectrophotometric grade) was used without purification. Gas chromatographic analysis showed that it contained less than 0.5% nitroethane. Two types of polycrystalline gold surfaces and experimental arrangements were used. #### A. Gold plated finger reactor The basic design of this reactor was similar to that of previous work. A stainless steel, hollow finger, 3.8 cm o.d., was located at the center of a 5-liter flask which was immersed in an ice bath. The outer surface of the finger was electroplated (over nickel) with a layer of gold (> 99.8% pure). $\approx 2.5 \times 10^{-3}$ cm in thickness. The length of the active section was 5.9 cm. and the area of the gold surface including the flat bottom was = 80 cm². Above the active region was a 1 cm length of plated thin-wall (to reduce thermal conduction from the bottom heated part) section which led to a 3 cm water-cooled length of the stainless steel finger. The inner region of the 5.9 cm length of the finger was filled with a Pb-Sn-Bi eutectic alloy and was used as an internal heating bath. A blade stirrer produced a uniform bath temperature. The temperature profile of the bath was measured by a chromelalumel thermocouple which moved inside a thin wall stainless steel tube. This design gave fairly uniform temperature distribution over the finger surface. Except for the uppermost part of the gold surface adjacent to the thin-walled section, the variation of temperature over the surface was # 4°. The average distance between the hot surface of the finger and the wall of the 5-1 flask was about 7 cm. The surface of the finger reactor was processed by three methods: a) oxidation with 1 torr oxygen; b) oxidation followed by reduction with 1 torr hydrogen; c) seasoning with 10^{-2} torr reactant. All the processing procedures were conducted at 600 K to 700 K and repeated anew each day. #### B. Gold wire reactor A length of 26 gauge fine gold wire was drawn by Speyer Metallurgy Co., Seattle. A U-shaped double length of gold wire was hung longitudinally on small glass hooks in a glass cylinder of diameter 9 cm. The wire diameter was 0.1 mm and its total length was 69.5 cm. The geometric surface area of this wire was 2 cm². The ends of the gold wire were spot-welded to a nickel-coated tungsten rod. The wire was heated to a maximum temperature of 1200 K by resistive heating. The electric resistance was found by measuring the voltage and current with Keithley voltammeters. Adjustment of the temperature of the wire was fast and easy. The temperature of the glass cylinder wall was maintained at room temperature. The average distance between the wire and the glass cylinder was 4 cm. Due to end losses there were two cooler regions on the uppermost parts of the gold wire; the length of each region was approximately 4 cm. In order to estimate the temperature distribution over this length, we resorted to the treatment of a similar circumstance reported for tungsten wire. 18,19 After correction for the end effect, the average temperature of the wire was calculated from a chart of the specific electric resistance vs. temperature drawn from data in the literature. 20 To check the value and uniformity of the temperature along the main part of the gold wire, temperature measurements were also made with an optical pyrometer. The temperature variation over the length of the wire was \pm 25°, while the average temperature given by the pyrometer agreed with the resistance measurements within 10^{0} . The latter measurement was adopted for the temperature of the wire. Similar processing procedures as for the finger were used except that they were carried out at 100-fold lower pressures. It was found that a half-hour seasoning gave reproducible results. The procedure was carried out at 1100 K. Procedure Before a cyclobutene run, the reactor was evacuated to $\approx 3 \times 10^{-6}$ torr for the finger reactor and $1-2 \times 10^{-6}$ torr for the wire reactor. The substrate reaction pressure was $\approx 1-2 \times 10^{-4}$ torr. The reaction fraction was 0.5% to 80% (finger) and 0.5% to 50% (wire). The average temperature change during a run was $\pm 0.5^{\circ}$ for the shortest run and $\pm 4^{\circ}$ for the longest one. The reaction temperatures were varied over the range of 425 - 668 K, for the finger reactor, and 525 - 1150 K, for the wire reactor, so that there was an overlap region in which the results obtained from the two reactors could be compared. The reaction mixture was collected in a liquid nitrogen trap. Analysis was made with a squalane SCOT column and FID. No side reaction was found. In all details, the procedure was similar to that described earlier. 7,10 Nitromethane was studied only in the wire reactor. As before, ¹¹ acetonitrile was used as an internal standard against which the disappearance of substrate could be accurately measured. No attempt was made to monitor all of the product species which, for this system, are very numerous. Separation of the reaction products was made on a 1-m column of 3mm copper tubing packed with Porapak Q and maintained at 150°C. The detector was FID. #### Results and Discussion #### Cyclobutene The molecules of cyclobutene energized above the threshold have a greater than 99% probability of reaction during their flight time from the surface, according to RRKM calculations. $^{8-10}$ Collision of the activated molecule with the bath gas during the flight time can be neglected and the unimolecular isomerization reaction is close to the second order region under present conditions. The isomerization of cyclobutene on the gold finger obeyed the first order rate law; sample curves are shown in Fig. 2. Within the experimental error, no difference in the results was noticed between the different processing procedures for the surface. The apparent rate constant k is plotted against temperature in Fig. 3. Some points, especially at higher temperatures, are the average of three to four measurements. The experimental reaction probability $P_{\rm C}$ was obtained by use of the equation, $P_{\rm C}$ = 4 Vk/Sc̄, where V is the volume of the reactor, S is the area of the hot gold surface, and c̄ is the average translational velocity of the reactant molecules at the temperature of the cold wall. A plot of $P_{\rm C}$ vs. temperature is given in Fig. 4; two theoretical strong collider $P_{\rm C}$ curves are also shown, which were calculated for two values of the reaction threshold energy, 21 32.0 and 32.4 kcal mol⁻¹. The two values correspond to two different activated complexes; Elliott and Frey prefer the latter value although there is little to choose between them. The earlier studies in this laboratory^{7,9,10} showed that seasoned pyrex and silica surfaces exhibit strong collider character near and below 400 K. From Fig. 4, one can conclude that the gold surface behaves as an even stronger collider than those. The defect from strong collider behavior is only evident at temperatures above 600 K. The isomerization of cyclobutene in the wire reactor also obeyed the first order rate law (Fig. 5). The measured $P_{\rm c}$ values are shown in Fig. 5 or 6. When compared with the data for the finger reactor, it is apparent that the two sets of values in the lower, overlap temperature region concord quite well. Some differences arise however in the effect of the processing procedure on the gold wire at intermediate temperatures. As was the case in earlier work with hydrocarbons, the cyclobutene seasoned surface again gave the lowest rate. The oxidized surface seemed to behave as a stronger collider than the seasoned (reduced) surface. It is noteworthy, however, that all seasoning procedures converge on the same energy transfer efficiency at the highest temperatures (1100 K - 1150 K); this leads us to believe that surface catalytic reaction effects are not important in the wire activation experiments. Some analogy may be drawn with work of Somorjai and co-workers. 22,23 His group has tested the adsorption of butane and pentane on the Pt(111) crystal surface at 110 K. They have found that preadsorbed oxygen promoted the adsorption of the hydrocarbons and that preadsorbed hydrogen hindered it. Although our experimental temperature was much higher than theirs, for what it is worth, we do have a related tendency, i.e., the oxygen-processed gold surface gave a higher energy transfer efficiency than did the hydrogen-processed surface. Furthermore, they found that the carbonaceous overlayer formed on the metal surface by the pyrolysis of organic materials decreased the reaction rate. This conclusion is parallel with our observations. Another factor which is worthy of mention is sintering or reorganization of the crystal lattice. The $P_{\rm c}$ curves in Fig. 6 bend over rather quickly as the temperature was increased, and all three curves approach each other. From estimates of the Tammann temperature and the melting point (1336 K) of gold, then in the range 400 - 600 K the crystal lattice of gold may start to become mobile, the surface atoms may exchange with the bulk atoms and at even higher temperature the influence of different processing procedures is more likely to be lost. It may be useful to point out that the strong collider characteristic of the gold surface at low temperature could in some circumstances be useful for the estimation of the threshold energy \mathbf{E}_0 of some chemical reactions. As a routine method, \mathbf{E}_0 is usually derived from the high pressure Arrhenius parameters. Sometimes high pressure experiments give troubles. In that case, it might be a better choice to take advantage of lower pressure and the strong collider character of gold or other surfaces. #### Nitromethane Energy transfer by nitromethane at a silica surface has been studied before by the VEM method. ¹¹ Although the products of the reaction were not identified thoroughly, the species were similar to the products reported in the literature $^{25-27}$ for which a C-N bond rupture mechanism has been concluded. When the silica surface was simply seasoned with the reactant itself, as was customary in earlier experiments with hydrocarbons in order to eliminate surface reaction, $^{6-10}$ some evidence of surface catalysis and irreproducibility was exhibited. Processing of the silica by oxygen in fact gave the lowest decomposition rate as well as reproducible data. A higher energy transfer efficiency for nitromethane relative to cyclobutene was found, presumably due to the higher polarity of the former. A threshold energy, E_0 = 54.4 kcal mol⁻¹, used to fit these experimental results was calculated from Arrhenius parameters in the literature. ²⁷ In the gold wire reactor, a pressure of $\sim 1 \times 10^{-4}$ torr nitromethane on variously processed/seasoned surfaces was employed. To process the gold surface, a variety of additional procedures was used: oxidation by oxygen; oxidation followed by exposure to hydrogen, or nitrogen, or argon or xenon; reduction by carbon monoxide, or by nitromethane itself, or by cyclopropane. The processing temperature was 1000-1100 K. Under all of these conditions the gold-nitromethane system exhibited strong catalytic and, more or less ($\pm 50\%$), reproducible characteristics, i.e., the different processing procedures gave no large differences in reactivity in the experimental temperature range. However, the experimental P_c values were one to two magnitudes higher than the values calculated for a strong collider, based on the threshold of 54.4 kcal mol⁻¹. From 500 K to 900 K, the P_c value increased with temperature. From 900 K to 1100 K, (the highest temperature examined), the P_c curve became flat. This phenomenon is quite different from the behavior of nitromethane at the silica surface. ¹¹ In Fig. 7 a graph of results on the cyclopropane-seasoned (at 1000 K) gold wire surface is shown. The experimental points roughly follow a strong collider curve having a threshold energy of 31-32 kcal mol⁻¹. It is quite evident that the seasoning, resulting in deposition of a graphitic polycyclopropane layer in this case, does not necessarily mask the effect and behavior of the underlying substrate. #### **Appendix** Vibrational frequencies (cm⁻¹) and parameters used in calculation: (1) Cyclobutene: 21 Molecule: 3126, 3058, 2955(2), 2933, 2916, 1566, 1444, 1426, 1288, 1276, 1210, 1186, 1113, 1100, 1074, 986, 875, 850, 846, 800, 640, 635, 325. Activated complex A: 3015(6), 1340(7), 1005(6), 670(3), 335. $E_0=32.0$ kcal/mol Activated complex C: 3300(6), 1320(12), 660(5). $E_0=32.4$ kcal/mol; F=1.3 (2) Nitromethane: 11,28 Molecule: 3048(2), 2965, 1582, 1488, 1449, 1413, 1384, 1153, 1097, 921, 647, 599, 476, internal rotation ($\sigma = 6$) #### References - / This work was supported by the Office of Naval Research. - # Visiting Scholar from Qinghua University, Beijing, P.R.C. - 1. Ceyer, S. T.; Somorjai, G. A. Ann. Rev. Phys. Chem. 28 (1977) 477. - 2. Goodman, F. O. J. Phys. Chem. 84 (1980) 1431. - 3. Cardillo, M. J. Ann. Rev. Phys. Chem. 32 (1981) 331. - 4. Rosenblatt, G. M. Acc. Chem. Res. 14 (1981) 42. - 5. Foner, S. N.; Hudson, R. L. <u>J. Chem. Phys.</u> 75 (1981) 4727. - 6. Kelley, D. F.; Zalotai, L.; Rabinovitch, B. S. Chem. Phys. 46 (1980) 379. - 7. Kelley, D. F.; Kasai, T.; Rabinovitch, B. S. J. Phys. Chem. 85 (1980) 1100. - 8. Arakawa, R.; Kelley, D. F.; Rabinovitch, B. S. J. Chem. Phys. 76 (1982) 2384. - 9. Flowers, M. C.; Wolters, F. C.; Kelley, D. F.; Rabinovitch, B. S. <u>Chem. Phys.</u> <u>Lett.</u> 69 (1980) 543. - 10. Wolters, F. C.; Flowers, M. C.; Rabinovitch, B. S. J. Phys. Chem. 85 (1981) 589. - 11. Yuan, W.; Rabinovitch, B. S.; Tosa, R. J. Phys. Chem. 86 (1982) 2796. - 12. Amorebleta, V. T.; Colussi, A. J. <u>J. Phys. Chem.</u> <u>86</u> (1982) 3058. - 13. Kuzhushner, M. A.; Kustarev, V. G.; Shub, B. R. <u>Dokl. Phys. Chem. (USSR)</u> 237 (1977) 1148. - 14. Rossetti, R.; Brus, L. E. J. Chem. Phys. 76 (1982) 1146. - 15. Ueba, H. <u>J. Chem. Phys.</u> <u>77</u> (1982) 3759. - 16. Tardy, D. C.; Rabinovitch, B. S. Chem. Rev. 77 (1977) 369. - 17. Puddephatt, R. J. "The Chemistry of Gold" Elsevier Scientific Publishing Company, 1978, p. 253. - 18. Worthing, A. G.; Halliday, D. "Heat" (second printing) John Wiley & Sons, Inc. (1948) p. 172. - 19. Herzfeld, C. M. "Temperature; Its Measurement and Control in Science and Industry" Vol. 3, Part 2. Reinhold Publishing Corp. (1962) p. 530. - 20. Forsythe, W. E. "Smithsonian Physical Tables" (Ninth Revised Edition) City of Washington, published by the Smithsonian Institution (1954). - 21. Elliott, C. S.; Frey, H. M. Trans. Faraday Soc. 62 (1966) 895. - 22. Salmeron, M.; Somorjai, G. A. J. Phys. Chem. 85 (1981) 3835. - 23. Somorjai, G. A.; Zaera, F. J. Phys. Chem. 86 (1932) 3070. - 24. Drauglis, E.; Gretz, R. D.; Jaffee, R. I. "Molecular Processes on Solid Surfaces" McGraw-Hill Book Company (1969) p. 14. - 25. Dubikhin, V. V.; Nazin, G. M.; Manelis, G. B. <u>Akad. Nauk. SSSR, Chem. Sci.</u> Div. Bull. (1971) 1247. - 26. Perche, A.; Tricot, J. C.; Lucquin, M. J. <u>Chem. Res. (S)</u> (1979) 116, (1979) 304, (1979) 306. - 27. Glanzer, K.; Troe, J. <u>Helv. Chim. Acta</u> <u>55</u> (1972) 2884; Troe, J. <u>J. Chem.</u> <u>Phys.</u> <u>66</u> (1977) 4758. - 28. Wells, A. J.; Wilson, E. B. Jr. <u>J. Chem. Phys. 9</u> (1941) 314. #### Figure Captions: - Fig. 1. Comparison of accommodation coefficients. O, n-octane—silica system¹²; ▲, n-butane—platinum system⁵; □, cyclobutene—silica system, this laboratory.⁷,8,10 Fig. 2. First order plots, gold finger reactor. □, oxidized surface; ■, seasoned surface; ○, oxidized-reduced surface. Fig. 3. The apparent rate constant k vs. the temperature TK for the finger reactor; □, oxidized surface; ■, seasoned surface; ○, oxidized-reduced surface. Fig. 4. The single-collision reaction probability P_C for cyclobutene vs. TK for the finger reactor; - strong collider curve (E₀= 32.0 kcal mol⁻¹); strong collider curve (E₀= 32.4 kcal mol⁻¹); □, oxidized surface; ■, seasoned surface; ○, oxidized-reduced surface. Fig. 5. First order plots, gold wire reaction; ○, C = 10⁻², T = 1015 K, oxidized-reduced surface; ●, C = 10⁻³, T = 844 K, seasoned surface. Fig. 6. The single-collision reaction probability P_C for cyclobutene vs. tempera- - ture T in the gold wire reactor; - strong collider curve (E₀= 32.0 kcal mol⁻¹); -- strong collider curve (E₀= 32.4 kcal mol⁻¹); D, oxidized surface; seasoned surface; oxidized-reduced surface. - Fig. 7. The experimental, \bigcirc , single-collision reaction probability P_{C} for nitromethane vs. temperature T in the gold wire reactor. The number on every solid curve is the assumed E_{O} value (kcal mol⁻¹) used for calculating strong collider curves. 7:4.1 71.3 7.94 F.9.6 .7 November 30, 1982 | Copies | | No. Copies | |--------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | Dr. F. Roberto
Code AFRPL MKPA
Edwards AFB, CA 93523 | 1 | | | Dr. L.H. Caveny
Air Force Office of Scient | l
ific | | | Research Directorate of Aerospace S Bolling Air Force Base Washington, D.C. 20332 | | | 10 | Air Force Office of Scient Research | | | | Bolling Air Force Base
Washington, D.C. 20332 | Tences | | 1 | Dr. John S. Wilkes, Jr.
FJSRL/NC
USAF Academy, CO 80840 | 1 | | 1 | Dr. R.L. Lou
Aerojet Strategic Propuls
P.O. Box 15699C
Sacramento, CA 95813 | l
ion Co. | | 1 | Dr. V.J. Keenan
Anal-Syn Lab Inc.
P.O. Box 547
Paoli, PA 19301 | 1 | | 1 | ARRADCOM
Code DRDAR-BLT | | | | Mr. L.A. Watermeier | 1 | | 1 | ARRADCOM
Code DRDAR-BLI | | | 1 | Dr. W.W. Wharton
Attn: DRSMI-RKL
Commander
U.S. Army Missile Command
Redstone Arsenal, AL 3589 | 1 | | | 1 1 1 | Dr. F. Roberto Code AFRPL MKPA Edwards AFB, CA 93523 Dr. L.H. Caveny Air Force Office of Scient Research Directorate of Aerospace S Bolling Air Force Base Washington, D.C. 20332 Mr. Donald L. Ball Air Force Office of Scient Research Directorate of Chemical Sc Bolling Air Force Base Washington, D.C. 20332 1 Dr. John S. Wilkes, Jr. FJSRL/NC USAF Academy, CO 80840 1 Dr. R.L. Lou Aerojet Strategic Propuls: P.O. Box 15699C Sacramento, CA 95813 Dr. V.J. Keenan Anal-Syn Lab Inc. P.O. Box 547 Paoli, PA 19301 Dr. Philip Howe Army Ballistic Research Lai ARRADCOM Code DRDAR-BLT Aberdeen Proving Ground, Mi Mr. L.A. Watermeier Army Ballistic Research Lai ARRADCOM Code DRDAR-BLI Aberdeen Proving Ground, Mi Mr. L.A. Watermeier Army Ballistic Research Lai ARRADCOM Code DRDAR-BLI Aberdeen Proving Ground, Mi Dr. W.W. Wharton Attn: DRSMI-RKL Commander U.S. Army Missile Command | | No. | Copies | N | lo. Copies | |--|--------|--|------------| | Mr. J. Murrin
Naval Sea Systems Command
Code 62R2
Washington, D.C. 20362 | 1 | Dr. A. Nielsen
Naval Weapons Center
Code 385
China Lake, CA 93555 | 1 | | Dr. P.J. Pastine
Naval Surface Weapons Center
Code RO4
White Oak
Silver Spring, MD 20910 | 1 | Dr. R. Reed, Jr.
Naval Weapons Center
Code 388
China Lake, CA 93555 | 1 | | Mr. L. Roslund Naval Surface Weapons Center Code R122 White Oak | 1 | Dr. L. Smith
Naval Weapons Center
Code 3205
China Lake, CA 93555 | 1 | | Silver Spring, MD 20910 Mr. M. Stosz Naval Surface Weapons Center | 1 | Dr. B. Douda
Naval Weapons Support Ce
Code 5042
Crane, IN 47522 | l
enter | | Code R121 White Oak Silver Spring, MD 20910 Dr. E. Zimmet | ī | Dr. A. Faulstich
Chief of Naval Technolog
MAT Code 0716
Washington, D.C. 20360 |)
Jy | | Naval Surface Weapons Center
Code R13
White Oak
Silver Spring, MD 20910 | | LCDR J. Walker
Chief of Naval Material
Office of Naval Technolo
MAT, Code 0712 | 1
ogy | | Dr. D.R. Derr
Naval Weapons Center
Code 388 | 1 | Washington, D.C. 20360
Mr. Joe McCartney | 1 | | China Lake, CA 93555 Mr. Lee N. Gilbert | 1 | Naval Ocean Systems Cent
San Diego, CA 92152 | er | | Naval Weapons Center
Code 3205
China Lake, CA 93555 | | Dr. S. Yamamoto
Marine Sciences Division
Naval Ocean Systems Cent
San Diego, CA 91232 | | | Dr. E. Martin
Naval Weapons Center
Code 3858
China Lake, CA 93555 | 1 | Dr. G. Bosmajian
Applied Chemistry Divisi
Naval Ship Research & De
Center | | | Mr. R. McCarten
Naval Weapons Center
Code 3272
China Lake, CA 93555 | 1 | Annapolis, MD 21401 Dr. H. Shuey Rohm and Haas Company | î | | | | Huntsville, AL 35801 | | | | No. Copies | No. Copies | |---|------------|---| | Mr. R. Brown
Naval Air Systems Command
Code 330
Washington, D.C. 20361 | 1 | Dr. J. Schnur 1
Naval Research Lab.
Code 6510
Washington, D.C. 20375 | | Dr. H. Rosenwasser
Naval Air Systems Command
AIR-310C
Washington, D.C. 20360 | 1 | Mr. R. Beauregard 1
Naval Sea Systems Command
SEA 64E
Washington, D.C. 20362 | | Mr. B. Sobers
Naval Air Systems Command
Code 03P25
Washington, D.C. 20360 | 1 | Mr. G. Edwards 1
Naval Sea Systems Command
Code 62R3
Washington, D.C. 29362 | | Dr. L.R. Rothstein
Assistant Director
Naval Explosives Dev.
Engineering Dept.
Naval Weapons Station | 1 | Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, PA 19112 | | Pr. Lionel Dickinson Naval Explosive Ordnance Disposal Tech. Center Code D | 1 | Dr. H.G. Adolph 1 Naval Surface Weapons Center Code R11 White Oak Silver Spring, MD 20910 | | Indian Head, MD 20640 Mr. C.L. Adams Naval Ordnance Station Code PM4 | 1 | Dr. T.D. Austin 1
Naval Surface Weapons Center
Code R16
Indian Head, MD 20640 | | Indian Head, MD 20640 Mr. S. Mitchell Naval Ordnance Station Code 5253 Indian Head, MD 20640 | 1 | Dr. T. Hall Code R-11 Naval Surface Weapons Center White Oak Laboratory Silver Spring, MD 20910 | | Dr. William Tolles
Dean of Research
Naval Postgraduate School
Monterey, CA 93940 | 1 | Mr. G.L. Mackenzie Naval Surface Weapons Center Code R101 Indian Head, MD 20640 | | Naval Research Lab.
Code 6100
Washington, D.C. 20375 | 1 | Dr. K.F. Mueller Naval Surface Weapons Center Code Rll White Oak Silver Spring, MD 20910 | | No. | Copies | <u>N</u> | o. Copies | |---|--------|--|-----------| | Dr. R.G. Rhoades
Commander
Army Missile Command
DRSMI-R
Redstone Arsenal, AL 35898 | 1 | Dr. E.H. Debutts
Hercules Inc.
Baccus Works
P.O. Box 98
Magna, UT 84044 | 1 | | Dr. W.D. Stephens
Atlantic Research Corp.
Pine Ridge Plant
7511 Wellington Rd.
Gainesville, VA 22065 | 1 | Dr. James H. Thacher
Hercules Inc. Magna
Baccus Works
P.O. Box 98
Magna, UT 84044 | 1 | | Dr. A.W. Barrows
Ballistic Research Laboratory
USA ARRADCOM
DRDAR-BLP
Aberdeen Proving Ground, MD 21005 | 1 | Mr. Theodore M. Gilliland
Johns Hopkins University A
Chemical Propulsion Info.
Johns Hopkins Road
Laurel, MD 20810 | PL | | Dr. C.M. Frey Chemical Systems Division P.O. Box 358 Sunnyvale, CA 94086 | 1 | Dr. R. McGuire
Lawrence Livermore Laborat
University of California
Code L-324
Livermore, CA 94550 | l
ory | | Professor F. Rodriguez
Cornell University
School of Chemical Engineering
Olin Hall
Ithaca, NY 14853 | 1 | Dr. Jack Linsk
Lockheed Missiles & Space
P.O. Box 504
Code Org. 83-10, Bldg. 154
Sunnyvale, CA 94088 | | | Defense Technical Information
Center
DTIC-DDA-2
Cameron Station
Alexandria, VA 22314 | 12 | Dr. B.G. Craig
Los Alamos National Lab
P.O. Box 1663
NSP/DOD, MS-245
Los Alamos, NM 87545 | 1 | | | | Dr. R.L. Rabie
WX-2, MS-952
Los Alamos National Lab.
P.O. Box 1663
Los Alamos, NM 37545 | 1 | | Dr. Ronald L. Simmons Hercules Inc. Eglin AFATL/DLDL Eglin AFB, FL 32542 | 1 | Dr. R. Rogers
Los Alamos Scientific Lab.
WX-2
P.O. Box 1663
Los Alamos, NM 87545 | 1 | | No. | Copies | | No. Copies | |---|--------|--|------------| | Dr. J.F. Kincaid
Strategic Systems Project
Office
Department of the Navy
Room 901 | 1 | Dr. C.W. Vriesen
Thiokol Elkton Division
P.O. Box 241
Elkton, MD 21921 | 1 | | Washington, D.C. 20376 Strategic Systems Project Office | 1 | Dr. J.C. Hinshaw
Thiokol Wasatch Division
P.O. Box 524 | 1 | | Propulsion Unit
Code SP2731 | | Brigham City, UT 83402 | | | Department of the Navy
Washington, D.C. 20376 | | U.S. Army Research Office
Chemical & Biological Scien
Division | ences | | Mr. E.L. Throckmorton Strategic Systems Project Office Department of the Navy | 1 | P.O. Box 12211
Research Triangle Park, NO | 27709 | | Room 1048
Washington, D.C. 20376 | | Dr. R.F. Walker
USA ARRADCOM
DRDAR-LCE | 1 | | Dr. D.A. Flanigan
Thiokol
Huntsville Division
Huntsville, AL 35807 | 1 | Dover, NJ 07801 | | | Mr. G.F. Mangum Thiokol Corporation Huntsville Division Huntsville, AL 35807 | 1 | Dr. T. Sinden Munitions Directorate Propellants and Explosives Defense Equipment Staff British Embassy 3100 Massachusetts Ave. | 1
; | | Mr. E.S. Sutton Thiokol Corporation Elkton Division P.O. Box 241 Elkton, MD 21921 | 1 | Washington, D.C. 20008 | | | Dr. G. Thompson
Thiokol
Wasatch Division
MS 240 P.O. Box 524 | 1 | Mr. J.M. Frankle Army Ballistic Research La ARRADCOM Code DRDAR-BLI Aberdeen Proving Ground, N | | | Brigham City, UT 84302 | | Aberticen Troving Ground, T | 10 21000 | | Dr. T.F. Davidson
Technical Director
Thiokol Corporation
Government Systems Group | 1 | Dr. Ingo W. May
Army Ballistic Research La
ARRADCOM
Code DRDAR-BLI | l
ab | | P.O. Box 9258
Ogden, UT 84409 | | Aberdeen Proving Ground, N | 1D 21005 | # No. Copies | E. J. Palm
Commander
Army Missile Command
DRSMI-RK
Redstone Arsenal, AL 35898 | 1 | Dr. Kenneth O. Hartman Hercules Aerospace Division Hercules Incorporated Allegany Ballistics Lab P.O. Box 210 Cumberland, MD 21502 | 1 | |---|---|--|---| | Dr. Merrill K. King
Atlantic Research Corp.
5390 Cherokee Avenue
Alexandria, VA 22314 | 1 | Dr. Joyce J. Kaufman The Johns Hopkins University Department of Chemistry Baltimore, MD 21218 | 1 | | Dr. R.J. Bartlett
Batelle Columbus Laboratories
505 King Avenue
Columbus, OH 43201 | 1 | Dr. John K. Dienes
T-3, MS-216
Los Alamos National Lab
P.O. Box 1663 | 1 | | Dr. P. Rentzepis
Bell Laboratories
Murray Hill, NJ 07971 | 1 | Los Alamos, NM 87544 Dr. H.P. Marshall | 1 | | Professor Y.T. Lee
Department of Chemistry
University of California
Berkeley, CA 94720 | 1 | Dept. 52-35, Bldg. 204.2
Lockheed Missile & Space Co.
3251 Hanover Street
Palo Alto, CA 94304 | | | Professor M. Nicol Department of Chemistry 405 Hilgard Avenue University of California | 1 | Professor John Deutsch
MIT
Department of Chemistry
Cambridge, MA 02139 | 1 | | Los Angeles, CA 90024 Professor S.S. Penner University of California | 1 | Professor Barry Kunz
College of Sciences & Arts
Department of PHysics
Michigan Technological Univ. | 1 | | Energy Center
Mail Code B-010
La Jolla, CA 92093 | | Houghton, MI 49931 Dr. R. Bernecker Code R13 | 1 | | Professor Curt Wittig University of Southern CA Dept. of Electrical Engineering University Park | 1 | Naval Surface Weapons Center
White Oak
Silver Spring, MD 20910 | | | Los Angeles, CA 90007 | | Dr. C.S. Coffey
Naval Surface Weapons Center
Code R13
White Oak
Silver Spring, MD 20910 | 1 | | | No. Copies | |---|------------| | Dr. W. L. Elban
Code Rl3
Naval Surface Weapons Cente
White Oak | 1
r | | Silver Spring, MD 20910 | | | Mr. K.J. Graham
Naval Weapons Center
Code 3835
China Lake, CA 93555 | 1 | | Dr. B. Junker
Office of Naval Research
Code 421
Arlington, VA 22217 | 1 | | Prof. H.A. Rabitz
Department of Chemistry
Princeton University
Princeton, NH 08540 | 1 | | Dr. M. Farber
Space Sciences, Inc.
135 West Maple Avenue
Monrovia, CA 91016 | 1 | | Mr. M. Hill
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025 | 1 | | U.S. Army Research Office
Engineering Division
Box 12211
Research Triangle Park, NC | 1
27709 | | U.S. Army Research Office
Metallurgy & Materials Sci.
Box 12211
Research Triangle Park, NC | | | Professor G.D. Duvall
Washington State University
Department of Physics
Pullman, WA 99163 | 1 | 300 500 700 900 1100 1300 T/K 7:41 FILMED 2-83 DTIC Dr. Ronald L. Simmons Hercules Inc. Eglin AFATL/DLDL Eglin AFB, FL 32542 Dr. R. Rogers Los Alamos Scientific Lab. WX-2 P.O. Box 1663 Los Alamos, NM 87545 P.O. Box 1663 Los Alamos, NM 37545 Dr. T.F. Davidson Technical Director Thiokol Corporation Government Systems Group P.O. Box 9258 Ogden, UT 84409 Dr. Ingo W. May 1 Army Ballistic Research Lab ARRADCOM Code DRDAR-BLI Aberdeen Proving Ground, MD 21005 Naval Surrace weapons center Code R13 White Oak Silver Spring, MD 20910 Washington State University Department of Physics Pullman, WA 99163 # DTIC